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MINI-FOCUS: CELL-BASED THERAPY

Controlled Delivery of Basic
Fibroblast Growth Factor Promotes
Human Cardiosphere-Derived Cell Engraftment to
Enhance Cardiac Repair for Chronic Myocardial Infarction
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Objectives This study was designed to determine whether controlled release of basic fibroblast growth factor (bFGF) might
improve human cardiosphere-derived cell (hCDC) therapy in a pig model of chronic myocardial infarction.

Background Current cell therapies for cardiac repair are limited by loss of the transplanted cells and poor differentiation.

Methods We conducted 2 randomized, placebo-controlled studies in immunosuppressed pigs with anterior myocardial
infarctions. Four weeks after coronary reperfusion, 14 pigs were randomly assigned to receive an intramyocar-
dial injection of placebo medium with or without bFGF-incorporating hydrogel implantation. As a second study,
26 pigs were randomized to receive controlled release of bFGF combined with or without hCDCs or bone mar-
row–derived mesenchymal stem cell transplantation 4 weeks after reperfusion.

Results Controlled release of bFGF in ischemic myocardium significantly augmented the formation of microvascular net-
works to enhance myocardial perfusion and contractile function. When combined with cell transplantation, the
additive effects of bFGF were confined to hCDC-injected animals, but were not observed in animals receiving
human bone marrow–derived mesenchymal stem cell transplantation. This was shown by increased donor-cell
engraftment and enhanced cardiomyocyte differentiation in the transplanted hearts, resulting in synergistically
improved ventricular function and regional wall motion and reduced infarct size.

Conclusions Controlled delivery of bFGF modulates the post-ischemic microenvironment to enhance hCDC engraftment and
differentiation. This novel strategy demonstrates significant functional improvements after myocardial infarction
and may potentially represent a therapeutic approach to be studied in a clinical trial in human heart
failure. (J Am Coll Cardiol 2008;52:1858–65) © 2008 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2008.06.052
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tem cell therapies offer tremendous possibilities for
urative approaches toward restoring lost myocardium
nd cardiac function; however, recent studies have indi-
ated that effective cardiac muscle regeneration might be

See page 1866

indered by poor cell engraftment and inefficient cardi-
myocyte differentiation of the transplanted cells in the
bsence of integration with the host myocardial environ-

ent after infarction (1). Although prior studies (2–5)
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ncluding our report have suggested human cardiac stem/
rogenitor cells as an attractive cell source for cardiac
epair, the beneficial effects of these cells in large animal
odels have yet to be investigated.
The basic fibroblast growth factor (bFGF) is a pluripotent
itogen and possesses properties to promote stem cell differ-

ntiation, proliferation, and survival (3,6,7). Biodegradable
elatin is a useful delivery modality to circumvent the short
alf-life of recombinant bFGF in vivo. We have designed a
ontrolled-release system for bFGF composed of acidic gelatin,
hich forms a poly-ion complex with bFGF (8). Biodegrad-

ble hydrogels display excellent biocompatibility demonstrated
y the absence of rejection and inflammation and achieve a
ontrolled release of bFGF in vivo as a result of hydrogel
egradation within 3 weeks (9). Controlled release of bFGF
as been shown to effectively enhance neoangiogenesis in
uman ischemic limbs (10).
This study was conducted to test whether the cell engraft-
ent, survival, and differentiation potential of human

ardiosphere-derived cells (hCDCs) could be promoted by
ontrolled delivery of bFGF-incorporating hydrogel in re-
ponse to experimental myocardial infarction, ultimately lead-
ng to improved performance in cardiovascular regeneration.

ethods

solation and expansion of hCDCs from human heart
amples. Human samples were obtained from 10 male
atients undergoing cardiac surgery, in conformity with the
uidelines of the Kyoto University Hospital and Ministry of
ducation, Culture, Sports, Science, and Technology, Ja-
an. Samples were excised, minced, and digested with 0.2%
ype II collagenase and 0.01% DNase I (Worthington
iochemical Corp., Lakewood, New Jersey) to obtain single
ell suspensions to generate cardiospheres as described
reviously (3). Cardiospheres were mechanically selected
rom the cultures and expanded in Dulbecco’s Modified
agle Medium (DMEM)/F12 medium containing 10%

etal bovine serum, 2% penicillin and streptomycin, and 40
g/ml human recombinant bFGF (Promega Corp., Madi-
on, Wisconsin). Six independent human bone marrow–
erived mesenchymal stem cells (hBMCs) were purchased
rom the RIKEN Cell Bank (RIKEN Bioresource Center,
baraki, Japan) (11). The hBMCs were plated in DMEM
ontaining 10% fetal bovine serum, 2% penicillin, strepto-
ycin, and 4 ng/ml bFGF. Cells were harvested at passage

, frozen at �80°C, and were thawed to process the third
ounds of passage 3 weeks before the transplantation. The
xpanded hBMCs were characterized by a fluorescence-
ctivated cell sorter using CD29, CD105, CD71, and
D90.
eneration of gelatin hydrogel sheet. The gelatin was

solated by an alkaline process from bovine bone with an
soelectric point of 5.0 as previously described (10). The
ater content of gelatin hydrogel was prepared to 94% by
hemical cross-linking at 140°C for 72 h. The gelatin was w
einforced by polytetrafluoroeth-
lene (W. L. Gore and Associ-
tes, Inc., Flagstaff, Arizona)
ericardial sheet (12) to provide
trength against the beating
eart. Human recombinant
FGF (Kaken Pharmaceutical
o., Tokyo, Japan) was incorpo-

ated into the gelatin hydrogel by
mpregnation for 3 h before
mplantation.

nimal models and study pro-
ocol. Based on computer-
enerated random allocation, we
erformed 2 randomized studies
f chronically instrumented ani-
als (Fig. 1). Myocardial infarc-

ion was created in 60 female
orkshire pigs by inflating the
alloon at the left ascending cor-
nary artery for 90 min, followed
y reperfusion. Thirteen of the
tudy pigs died in the early post-
perative period. We excluded 7 pigs with an ejection
raction �35% or �45% determined by transthoracic echo-
ardiography using the Teichholz method before random-
zation. Animals were assigned for randomization 1 week
fter the creation of myocardial infarction, and then cells
ere grown in culture for 3 weeks to prepare for transplan-

ation. Four study pigs died within 1 week after random-
zation but before the treatment due to heart failure.

In study 1, the eligible pigs (n � 14) were randomized to
eceive DMEM intramyocardial injection with or without
00 �g bFGF-incorporating gelatin hydrogel implantation
weeks after reperfusion. In study 2, we randomly assigned

ligible pigs (n � 26) to receive bFGF hydrogel sheet
mplantation with intramyocardial injections of either

MEM, 2.0 � 107 hBMCs, or 2.0 � 107 hCDCs. All
nimals in both studies were immunosuppressed with cy-
losporine A (Novartis Pharmaceuticals, East Hanover,
ew Jersey) 5 mg/kg daily from 5 days before transplanta-

ion until the time for sacrifice (13). Transplantation was
erformed by a 3-ml injection at 30 different sites along the
order zone and in the center of the scar area.
luorescence-activated cell sorter analysis. Single cell

uspensions were stained with the following antibodies:
hycoerythrin-conjugated antibodies against CD29, and
uorescein isothiocyanate–conjugated antibodies against
D45 (all from BD Biosciences, San Jose, California) or
D105 (Ancell, Bayport, Minnesota). Antibody against
ouse anti-human CD90 was detected by phycoerythrin-

onjugated gout anti-mouse immunoglobin G (BD Bio-
ciences). Samples were analyzed by FACSCalibur flow
ytometer (BD Biosciences).

eneration of retroviral vectors. The LacZ reporter gene

Abbreviations
and Acronyms

bFGF � basic fibroblast
growth factor

DMEM � Dulbecco’s
Modified Eagle Medium

FISH � fluorescent in situ
hybridization

hBMC � human bone
marrow–derived
mesenchymal stem cell

hCDC � human
cardiosphere-derived cell

LV � left
ventricle/ventricular

LVEF � left ventricular
ejection fraction

MRI � magnetic resonance
imaging

SPIO � superparamagnetic
iron oxide

SRS � systolic radial strain
as subcloned into a human cardi
ac troponin I promoter
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ontaining plasmid (14). The hCDCs were infected by
etrovirus containing pDsRed2-1 (Clontech Laboratories,
nc., Mountain View, California) and were co-cultured with
eonatal rat ventricular myocytes for 4 to 5 days.
alcium transients and electrophysiological studies. Cells
ere loaded with fluo-4/AM (0.625 mg/ml) and incubated
ith fluo-4-free Tyrode’s solution at 37°C as previously
escribed (15). Confocal images of fluo-4 and DsRed
uorescence intensities were obtained under excitation with
n argon-laser and a krypton laser, respectively. The signals
f action potentials from the electrodes were digitized and
isplayed on a digital oscilloscope (Model 310, Nicolet
nstrument Technologies, Madison, Wisconsin) and stored
nto a computer for offline analysis.
mmunostaining and fluorescence in situ hybridization
FISH) analysis. Paraffin-fixed sections were stained using
he following primary antibodies: Cy3-conjugated mouse
nti–alpha-smooth muscle actin, mouse anti-sarcomeric
lpha-actin, rabbit anti-connexin 43 (all from Sigma-
ldrich, St. Louis, Missouri), mouse anti-myosin heavy

hain, or rabbit anti-beta-galactosidase (all from Abcam
nc., Cambridge, Massachusetts). Secondary antibodies

Figure 1 Study Design

bFGF � basic fibroblast growth factor; CsA � cyclosporine A;
hBMC � human bone marrow-derived mesenchymal stem cell; hCDC � human ca
ere conjugated to Alexa fluorochromes and nuclei were e
isualized using 4,6-diamino-2-phenylindole (Invitrogen
orp. [Molecular Probe], Carlsbad, California). Arteriolar
ensity was evaluated morphometrically by histological
xamination of 10 randomly selected fields recognized as
nti–alpha-smooth muscle actin positive structures corrected
y the total area of tissue sections measured. FISH was
erformed as previously described (16). Deoxyribonucleic acid
robes for Cy3-conjugated human Y-chromosome (classical
atellite) and Cy5-conjugated porcine-specific genome were
rom Masahisa Tsuji (Chromosome Science Laboratory, Hi-
oshima, Japan). Images were captured with a BZ-8000 (Key-
nce, Osaka, Japan) and confocal microscope (Leica Microsys-
ems, Wetzlar, Germany).

everse transcriptase polymerase chain reaction and
estern blotting. Total ribonucleic acid was extracted

ith Trizol reagent (Invitrogen) and complementary de-
xyribonucleic acid was generated using a SuperScript III
omplementary deoxyribonucleic acid synthesis kit (Invitro-
en). Polymerase chain reactions were performed with
uman-specific primers as shown in the Supplemental
able. Transferred membranes were incubated with primary

ntibodies against phospho-Akt (S473), Akt, phospho–

ere-derived cell; MI � myocardial infarction.
rdiosph
xtracellular signal-related kinase 1/2, extracellular signal-
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elated kinase 1/2, phosho-p38, p38, phospho–Jun
-terminal kinase 1/2, or Jun N-terminal kinase 1/2 (all

rom Cell Signaling Technology Inc., Danvers, Massachu-
etts) as described previously (7). Horseradish peroxidase–
onjugated anti-rabbit immunoglobin G was used as a
econdary antibody.
ardiac magnetic resonance imaging (MRI). MRI im-

ges were obtained on a 1.5-T MR scanner (GE Medical
ystems, Milwaukee, Wisconsin) using electrocardiography-
ating. Global left ventricular (LV) function was assessed
sing a steady-state precession pulse sequence from 8
ontiguous short-axis slices (17). Infarct size was analyzed
y the late-enhancement MRI technique using contrast
gent (Omniscan, Daiichi-Sankyo, Japan). The LV mass
as analyzed using MASS software (Medis, Leiden, the
etherlands) and infarct size was calculated as enhanced LV
ass (g)/total LV mass (g).

ron-oxide labeling. The hCDCs were magnetically la-
eled before injection by using a superparamagnetic iron
xide (SPIO) (Nihon Schering, Osaka, Japan) with hem-
gglutinating virus of Japan envelope (GenomONE Neo)
Ishihara Sangyo Kaisha Ltd., Osaka, Japan). Magnetically
abeled hCDCs were assessed from 14 to 18 contiguous
hort-axis images by using pulse parameters for cardiac
ated, fast gradient-recoiled echocardiography. The SPIO-
abeled areas were measured and corrected by the values of
PIO densities of interest (18).

Figure 2 Controlled Delivery of bFGF Promotes Neoangiogenes

(A and B) Arteriolar density was measured by alpha-SMA staining in control and b
sured by myocardial contrast echocardiography. Signal intensities in the ischemic
MI analyzed by magnetic resonance imaging. Asterisks indicate the comparisons o
control and bFGF-treated groups. SMA � smooth muscle actin; other abbreviations
chocardiography. Echocardiography was performed us-
ng a Vivid 7 Echocardiography System (GE Vingmed
ltrasound, Horten, Norway) with a M3S transducer.
eal-time myocardial contrast echocardiography was per-

ormed by intravenous infusion of Levovist (Nihon, Scher-
ng) as previously described (19). Equal-sized transmural
egions of interest were placed in the ischemic border area
nd nonischemic posterolateral wall. Signal intensities in
ach region of interest were assessed 3 times and the ratios
ere calculated.
Two-dimensional strain echocardiography was per-

ormed using the EchoPAC program (GE Vingmed). The
schemic region, border area, and nonischemic posterolat-
ral area of the LV were analyzed at medial and apical levels
s described previously (20). The LV wall motion index was
efined as the ratio of peak systolic radial strain (SRS);
(medial level ischemic area SRS/medial level control area
RS) � (medial level border area SRS/medial level control
rea SRS) � (apical level ischemic area SRS/apical level
ontrol area SRS) � (apical level border area SRS/apical
evel control area SRS)]/4.
tatistics. Changes in variables from baseline to 4 weeks
fter treatment were analyzed with the paired t test. Differ-
nces between any 2 groups from baseline to 4 weeks were
ssessed with the Student t test using JMP software (SAS
nstitute, Cary, North Carolina). A value of p � 0.05 was
egarded as statistically significant.

Restores Cardiac Function in Ischemic Myocardium

ated hearts (n � 6). Bars � 50 �m (A). (C) Myocardial perfusion was mea-
orrected by control area are shown. (D) Functional recovery with bFGF treatment
lute change in respective measurement from baseline to 4 weeks follow-up in
Figure 1.
is and

FGF-tre
zone c
f abso
as in
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esults

andomized, placebo-controlled trial 1: controlled delivery
f bFGF enhances myocardial perfusion and restores car-
iac function in ischemic myocardium. Immunosuppressed
igs were randomized to receive intramyocardial injection of
ulture medium with or without bFGF-incorporating gelatin
ydrogel implantation 4 weeks after myocardial infarction. A
ignificant increase in the formation of arterial vessels was
ound in both infarct border zones (66.5 � 5.8/mm2 vs. 38.6 �
.8/mm2; p � 0.005) and necrotic areas (56.9 � 4.2/mm2 vs.
6.9 � 4.3/mm2; p � 0.005) as compared with control hearts
Figs. 2A and 2B). Myocardial contrast echocardiography
howed that bFGF-treated animals exhibited remarkably en-
anced myocardial perfusion when compared with myocardial
erfusion of the control group at 4 weeks (89.7 � 5.9% vs.
6.3 � 0.6%, p � 0.005) (Fig. 2C). In addition, bFGF
ignificantly improved left ventricular ejection fraction (LVEF)
t 4 weeks (LVEF: 37.1 � 4.2% vs. 31.8 � 4.7%; p � 0.005).
he absolute change in LVEF from baseline to 4 weeks was

ignificantly greater in the pigs treated by bFGF compared
ith the change in the LVEF of the control group (�4.9 �
.5% vs. –0.4 � 0.4%; p � 0.005) (Fig. 2D).

Figure 3 The Impact of bFGF on hCDCs In Vivo

(A) Paired MRIs were examined at day 4 and 4 weeks after hCDC transplantation
yellow arrowheads. (B) Cell engraftment was estimated by the retention of SPIO-la
transplantation with or without bFGF analyzed by MRI. (D) Infarct size was evaluat
absolute change in respective measurement from baseline to 4 weeks’ follow-up i
magnetic resonance imaging; SPIO � superparamagnetic iron oxide; other abbrevi
lacebo-controlled trial: bFGF increases hCDC engraft-
ent. As a preliminary experiment to confirm the benefi-

ial effects of bFGF on hCDCs, we conducted a placebo-
ontrolled study to compare engraftment efficiency of
CDC transplantation with or without controlled release of
FGF using SPIO nanoparticles to track hCDCs in vivo.
he morphological, surface marker, stem cell transcription

actor expression, calcium flux, and single cell electrical data
ndicate that the hCDCs that we cultured were the same
ells described in previous studies (Online Fig. 1) (3,4). At
weeks after implantation, there was a significant retention

f transplanted hCDCs in the ischemic myocardium when
ombined with bFGF treatment compared with hCDC
njection alone (Figs. 3A and 3B). Absolute changes in
VEF and infarct volume were both synergistically improved

n hCDC transplantation with bFGF than in hCDC injection
lone at 4 weeks after implantation (Figs. 3C and 3D).
andomized, placebo-controlled trial 2: epicardial deliv-

ry of bFGF with cell therapy improves cardiac func-
ion. We next performed a second, randomized study to
etermine whether the combination of bFGF with stem cell
herapy could improve cardiac function further after chronic

r without bFGF treatment. The low intensity of SPIO-labeled area is shown by
cells at 4 weeks corrected by that at day 4. (C) Functional recovery of hCDC
compared before and after treatment. Asterisks indicate the comparisons of

rol and bFGF-treated groups. LVEF � left ventricular ejection fraction; MRI �

as in Figure 1.
with o
beled

ed and
n cont
ations
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yocardial infarction. Although bFGF alone significantly
mproved LVEF and reduced infarct size compared with the
aseline, transplantation of hBMCs with bFGF had no
dditive effects on cardiac function (Figs. 4A and 4B). In
ontrast to the negligible effects of hBMCs, ischemic hearts
mplanted with hCDCs and bFGF-incorporating hydro-
els, both LVEF (38.4 � 6.2% vs. 30.1 � 4.3%, p � 0.005)
nd regional wall motion (58.5 � 11.7% vs. 46.2 � 7.2%,
� 0.005) showed significant improvements; infarct volume
as also remarkably reduced compared with the baseline (Figs.
A to 4C). The magnitude of improvement after transplanta-
ion of hCDCs with bFGF in cardiac function and infarct size
re significantly evident compared with cardiac function and
nfarct size of the control group by a comprehensive analysis of
oth studies 1 and 2 (Online Fig. 2).
ffects of controlled release of bFGF on cardiac regen-

ration after cell transplantation. To assess if cardiac
unction was restored, at least in part, by cardiomyocyte
ifferentiation from the transplanted cells, we engineered 3

ndependent hCDCs to express a LacZ reporter gene under

Figure 4 Controlled Delivery of bFGF With Cell Therapy Improve

(A and B) The LVEF and infarct size at baseline and 4 weeks after treatment was
echocardiography. Absolute change in each measurement was summarized and is
bFGF�hCDC. Abbreviations as in Figures 1 and 3.
he control of human cardiac troponin-I promoter (cTnI- a
acZ) by retrovirus infection (14). Immunofluorescence
nalyses in hCDC transplants showed that beta-gal-
xpressing cells were co-localized with myosin heavy chain
nd sarcomeric alpha-actin and were functionally coupled in
he ischemic border zone (Figs. 5A to 5D).

We performed FISH experiments to identify the trans-
lanted human male donor cells in female recipients (Fig.
E). The functional improvement observed in hCDC trans-
lantation with bFGF was confirmed by a greater magni-
ude of myocyte conversion compared with the injection of
BMCs combined with bFGF (Figs. 5F to 5H). Although
yocyte regeneration was almost exclusively (�90%)

hrough cell fusion in hBMC transplants with bFGF
reatment, approximately 33% of the differentiated human
ardiomyocytes were independent from cell fusion in hCDC
njection with bFGF (Fig. 5H).

iscussion

uccessful cell engraftment is a critical component to

rdiac Function

red by MRI. (C) The wall motion index was assessed by 2-dimensional strain
on the right. Green bars � bFGF; pink bars � bFGF�hBMC; red bars �
s Ca

measu
shown
chieve a significant improvement in LVEF for long-term
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esults. Our findings demonstrated that transplantation of
CDCs with bFGF treatment combined the advantages of
ardiomyocyte repopulation and stable vascular network
ormation, resulting in synergistically improved cell therapy
fficiency.

Local delivery of combination of growth and survival
actor(s), such as insulin-like growth factor 1, on scaffold in
ardiac muscles has been shown to improve donor cell
urvival and enhance tissue repair (21,22). Resident hCDCs
ay also require joint effects of multiple factors that
odulate cell proliferation and differentiation in response to

njury. Clinical trials of single protein infusion (23) in
uman heart disease have shown that the efficacy was not
ignificant in the long term. It is possible that the recom-
inant protein infused could be rapidly diffused in situ or a
ombinatorial protein release may be required to achieve the
esired degree of angiogenesis in the absence of cell transfer
24). Previous mouse experiments also supported the ben-
ficial effect of bFGF-releasing hydrogel transplantation in
he current study, demonstrating that bFGF could be slowly
eleased over time to promote neovascularization initially in
itu, and its biological effect was completely terminated as a
onsequence of hydrogel biodegradation in vivo within 3
eeks after implantation (9).
The less synergistic improvement in animals receiving

BMC injection combined with bFGF than those in

Figure 5 Myocardial Repair by Combination of bFGF and Cell T

(A) Differentiated cardiomyocytes expressing beta-gal (green) were counterstained
cardiomyocytes expressed connexin 43 (yellow) and sarcomeric alpha-actin (green
human cardiomyocytes (light blue) with pig genome sequences (white) suggestin
human cardiomyocytes lacking pig genome sequences (lower inset). (F and G) My
shown. (H) Quantitative analysis of cardiomyocyte regeneration and fusion. Human
by the total number of myocytes analyzed (�15,000 cells). The DAPI stain is show
diamino-2-phyenylindole; MHC � myosin heavy chain; other abbreviations as in Fig
CDC transplants with bFGF was unexpected. Experimen- t
al studies in animals suggested that transplantation of
MCs in myocardial infarction could prevent LV remod-
ling and attenuate the infarct size, mainly through Akt-
ediated paracrine effects, despite minimal myocyte regen-

ration (25). Our results suggested that controlled release of
FGF itself might stimulate these paracrine effectors on
ost myocardium and showed no additive effects when
BMCs were transplanted.
The cell tracking system using iron-oxide labeling has

een reported to be useful to serially monitor the trans-
lanted cells in vivo. However, iron-positive cells may not
irectly reflect surviving cells, but they are likely to detect
he dead cells colocalized with phagocytic macrophages in
he host myocardium (26). At least, our results suggested
hat direct cell injection alone might not be sufficient to
chieve efficient myocyte regeneration.

Although our results are limited in the experimental
etting of human-pig chimera transplantation, the host
nimals were immunosuppressed with a dose of cyclospor-
ne A as reported previously (13). Our findings demonstrate

previously undescribed therapeutic efficacy that a combi-
ation of bFGF with hCDCs can induce functionally stable
icrovascular networks to support efficient donor cell en-

raftment and differentiation. This novel strategy may
otentially enhance the cell therapy practically needed to

lantation

HC (red). (B) Magnified image is shown. (C and D) Differentiated human
The FISH analysis. In hCDC transplantation, hCDCs (red) differentiated into
usion (upper inset). Autonomous differentiation is shown by hCDC-derived
regeneration with (white arrows) or without (yellow arrows) cell fusion events is
omosome and sarcomeric alpha-actin–positive cells were counted and corrected
lue. Bars: 100 �m (A and C); 50 �m (E to G); 20 �m (B and D). DAPI � 4,6-
ransp

with M
). (E)

g cell f
ocyte
Y chr

n as b
ure 1.
reat patients with heart failure.
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APPENDIX

or a discussion of the isolation and characterization of hCDCs, Supple-
ental Figures 1 and 2, and a Supplemental Table, please see the online
ersion of this article.
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